The Science of Mind and Order
The title of this book of collected essays and lectures is intended precisely to define the contents. The essays, spread over thirty-five years, combine to propose a new way of thinking about ideas and about those aggregates of ideas which I call “minds.” This way of thinking I call the “ecology of mind,” or the ecology of ideas.
The questions which the book raises are ecological: How do ideas interact? Is there some sort of natural selection which determines the survival of some ideas and the extinction or death of others? What sort of economics limits the multiplicity of ideas in a given region of mind? What are the necessary conditions for stability (or survival) of such a system or subsystem?
I try to teach students—and this collection of essays is very much concerned with trying to communicate this thesis—that in scientific research you start from two beginnings, each of which has its own kind of authority: the observations cannot be denied, and the fundamentals must be fitted. You must achieve a sort of pincers maneuver. If you are surveying a piece of land, or mapping the stars, you have two bodies of knowledge, neither of which can be ignored. There are your own empirical measurements on the one hand and there is Euclidean geometry on the other. If these two cannot be made to fit together, then either the data are wrong or you have argued wrongly from them or you have made a major discovery leading to a revision of the whole of geometry.
This book is concerned with building a bridge between the facts of life and behavior and what we know today of the nature of pattern and order.
A metalogue is a conversation about some problematic subject. This conversation should be such that not only do the participants discuss the problem but the structure of the conversation as a whole is also relevant to the same subject. Only some of the conversations here presented achieve this double format. Notably, the history of evolutionary theory is inevitably a metalogue between man and nature, in which the creation and interaction of ideas must necessarily exemplify evolutionary process.
Thought chang’d the infinite to a serpent, that which pitieth
To a devouring flame; and man fled from its face and hid
In forests of night: then all the eternal forests were divided
Into earths rolling in circles of space, that like an ocean rush’d
And overwhelmed all except this finite wall of flesh.
Then was the serpent temple form’d, image of infinite
Shut up in finite revolutions; and man became an Angel,
Heaven a mighty circle turning, God a tyrant crown’d.
D: I don’t understand it. It sounds terrible, but what does it mean?
F: Well. It’s not an objective statement, because it is talking about the effect of objectivity—what the poet calls here “thought” upon the whole person or the whole of life. “Thought” should remain a part of the whole but instead spreads itself and meddles with the rest.
D: Go on.
F: Well. It slices everything to bits.
D: I don’t understand.
F: Well, the first slice is between the objective thing and the rest. And then inside the creature that’s made in the model of intellect, language, and tools, it is natural that purpose will evolve. Tools are for purposes and anything which blocks purpose is a hindrance. The world of the objective creature gets split into “helpful” things and “hindering” things.
D: Yes. I see that.
F: All right. Then the creature applies that split to the world of the whole person, and “helpful” and “hindering” become Good and Evil, and the world is then split between God and the Serpent. And after that, more and more splits follow because the intellect is always classifying and dividing things up.
D: Multiplying explanatory principles beyond necessity?
F: That’s right.
D: So, inevitably, when the objective creature looks at animals, it splits things up and makes the animals look like human beings after their intellects have invaded their souls.
F: Exactly. It’s a sort of inhuman anthropomorphism.
D: And that is why the objective people study all the little imps instead of the larger things?
F: Yes. It’s called S-R psychology. It’s easy to be objective about sex but not about love.
D: But, Daddy, you still haven’t answered the question about how dreams are put together.
F: I think really I have answered it. But let me try again. A dream is a metaphor or a tangle of metaphors. Do you know what a metaphor is?
D: Yes. If I say you are like a pig that is a simile. But if I say you are a pig, that is a metaphor.
F: Approximately, yes. When a metaphor is labeled as a metaphor it becomes a simile.
D: And it’s that labeling that a dream leaves out.
F: That’s right. A metaphor compares things without spelling out the comparison. It takes what is true of one group of things and applies it to another. When we say a nation “decays,” we are using a metaphor, suggesting that some changes in a nation are like changes which bacteria produce in fruit. But we don’t stop to mention the fruit or the bacteria.
D: And a dream is like that?
F: No. It’s the other way around. The dream would mention the fruit and possibly the bacteria but would not mention the nation. The dream elaborates on the relationship but does not identify the things that are related.
Form and Pattern in Anthropology
I picked up a vague mystical feeling that we must look for the same sort of processes in all fields of natural phenomena—that we might expect to find the same sort of laws at work in the structure of a crystal as in the structure of society, or that the segmentation of an earthworm might really be comparable to the process by which basalt pillars are formed. I should not preach this mystical faith in quite those terms today but would say rather that I believe that the types of mental operation which are useful in analyzing one field may be equally useful in another—that the framework (the eidos) of science, rather than the framework of Nature, is the same in all fields. But the more mystical phrasing of the matter was what I vaguely learnt, and it was of paramount importance. It lent a certain dignity to any scientific investigation, implying that when I was analyzing the patterns of partridges’ feathers, I might really get an answer or a bit of an answer to the whole puzzling business of pattern and regularity in nature. And further, this bit of mysticism was important because it gave me freedom to use my scientific background, the ways of thought that I had picked up in biology and elementary physics and chemistry; it encouraged me to expect these ways of thought to fit in with very different fields of observation. It enabled me to regard all my training as potentially useful rather than utterly irrelevant to anthropology.
There is another way, too, in which that mysticism has helped—a way which is especially relevant to my thesis. I want to emphasize that whenever we pride ourselves upon finding a newer, stricter way of thought or exposition; whenever we start insisting too hard upon “operationalism” or symbolic logic or any other of these very essential systems of tramlines, we lose something of the ability to think new thoughts. And equally, of course, whenever we rebel against the sterile rigidity of formal thought and exposition and let our ideas run wild, we likewise lose. As I see it, the advances in scientific thought come from a combination of loose and strict thinking, and this combination is the most precious tool of science. My mystical view of phenomena contributed specifically to build up this double habit of mind—it led me into wild “hunches” and, at the same time, compelled more formal thinking about those hunches. It encouraged looseness of thought and then immediately insisted that that looseness be measured up against a rigid concreteness. The point is that the first hunch from analogy is wild, and then, the moment I begin to work out the analogy, I am brought up against the rigid formulations which have been devised in the field from which I borrow the analogy.
This brings us to another very important motif in my thinking—a habit of constructing abstractions which refer to terms of comparison between entities.
Here I must digress for a moment to describe a trick of thought and speech, which I have found useful. When I am faced with a vague concept and feel that the time is not yet ripe to bring that concept into strict expression, I coin some loose expression for referring to this concept and do not want to prejudge the issue by giving the concept too meaningful a term. I therefore dub it hastily with some brief concrete colloquial term—generally Anglo-Saxon rather than Latin—I will speak of the “stuff” of culture, or “bits” of culture, or the “feel” of culture. These brief Anglo-Saxon terms have for me a definite feeling-tone which reminds me all the time that the concepts behind them are vague and await analysis. It is a trick like tying a knot in a handkerchief—but has the advantage that it still permits me, if I may so express it, to go on using the handkerchief for other purposes. I can go on using the vague concept in the valuable process of loose thinking—still continually reminded that my thoughts are loose.
I have spoken of my own personal experiences with strict and loose thinking, but I think actually the story which I have narrated is typical of the whole fluctuating business of the advance of science. In my case, which is a small one and comparatively insignificant in the whole advance of science, you can see both elements of the alternating process—first the loose thinking and the building up of a structure on unsound foundations and then the correction to stricter thinking and the substitution of a new underpinning beneath the already constructed mass. And that, I believe, is a pretty fair picture of how science advances, with this exception, that usually the edifice is larger and the individuals who finally contribute the new underpinning are different people from those who did the initial loose thinking. Sometimes, as in physics, we find centuries between the first building of the edifice and the later correction of the foundations—but the process is basically the same. And if you ask me for a recipe for speeding up this process, I would say first that we ought to accept and enjoy this dual nature of scientific thought and be willing to value the way in which the two processes work together to give us advances in understanding of the world. We ought not to frown too much on either process, or at least to frown equally on either process when it is unsupplemented by the other. There is, I think, a delay in science when we start to specialize for too long either in strict or in loose thinking.
Further than this, besides simply not hindering progress, I think we might do something to hasten matters, and I have suggested two ways in which this might be done. One is to train scientists to look among the older sciences for wild analogies to their own material, so that their wild hunches about their own problems will land them among the strict formulations. The second method is to train them to tie knots in their handkerchiefs whenever they leave some matter unformulated—to be willing to leave the matter so for years, but still leave a warning sign in the very terminology they use, such that these terms will forever stand, not as fences hiding the unknown from future investigators, but rather as signposts which read: “UNEXPLORED BEYOND THIS POINT.”
It would be an oversimplification—it would even be false—to say that science necessarily advances by the construction and empirical testing of successive working hypotheses. Among the physicists and chemists there may be some who really proceed in this orthodox manner, but among the social scientists there is perhaps not one. Our concepts are loosely defined—a haze of chiaroscuro prefiguring sharper lines still undrawn—and our hypotheses are still so vague that rarely can we imagine any crucial instance whose investigation will test them.
The analysis of Iatmul data led to the definition of ethos as “The expression of a culturally standardized system of organization of the instincts and emotions of the individuals.”
Style, Grace, and Information in Primitive Art
Aldous Huxley used to say that the central problem for humanity is the quest for grace. This word he used in what he thought was the sense in which it is used in the New Testament. He explained the word, however, in his own terms. He argued—like Walt Whitman—that the communication and behavior of animals has a naiveté, a simplicity, which man has lost. Man’s behavior is corrupted by deceit—even self-deceit—by purpose, and by self-consciousness. As Aldous saw the matter, man has lost the “grace” which animals still have. In terms of this contrast, Aldous argued that God resembles the animals rather than man: He is ideally unable to deceive and incapable of internal confusions. In the total scale of beings, therefore, man is as if displaced sideways and lacks that grace which the animals have and which God has.
I argue that art is a part of man’s quest for grace; sometimes his ecstasy in partial success, sometimes his rage and agony at failure. I argue also that there are many species of grace within the major genus; and also that there are many kinds of failure and frustration and departure from grace. No doubt each culture has its characteristic species of grace toward which its artists strive, and its own species of failure. Some cultures may foster a negative approach to this difficult integration, an avoidance of complexity by crass preference either for total consciousness or total unconsciousness. Their art is unlikely to be “great.” I shall argue that the problem of grace is fundamentally a problem of integration and that what is to be integrated is the diverse parts of the mind—especially those multiple levels of which one extreme is called “consciousness” and the other the “unconscious.” For the attainment of grace, the reasons of the heart must be integrated with the reasons of the reason.
How is it that the art of one culture can have meaning or validity for critics raised in a different culture? My answer would be that, if art is somehow expressive of something like grace or psychic integration, then the success of this expression might well be recognizable across cultural barriers, The physical grace of cats is profoundly different from the physical grace of horses, and yet a man who has the physical grace of neither can evaluate that of both. And even when the subject matter of art is the frustration of integration, cross-cultural recognition of the products of this frustration is not too surprising. The central question is: In what form is information about psychic integration contained or coded in the work of art?
The code whereby perceived objects or persons (or supernaturals) are transformed into wood or paint is a source of information about the artist and his culture. It is the very rules of transformation that are of interest to me—not the message, but the code. My goal is not instrumental. I do not want to use the transformation rules when discovered to undo the transformation or to “decode” the message. To translate the art object into mythology and then examine the mythology would be only a neat way of dodging or negating the problem of “what is art?”
I ask, then, not about the meaning of the encoded message but rather about the meaning of the code chosen. But still that most slippery word “meaning” must be defined. It will be convenient to define meaning in the most general possible way in the first instance. “Meaning” may be regarded as an approximate synonym of pattern, redundancy, information, and “restraint,” within a paradigm of the following sort: Any aggregate of events or objects (e.g., a sequence of phonemes, a painting, or a frog, or a culture) shall be said to contain “redundancy” or “pattern” if the aggregate can be divided in any way by a “slash mark,” such that an observer perceiving only what is on one side of the slash mark can guess, with better than random success, what is on the other side of the slash mark. We may say that what is on one side of the slash contains information or has meaning about what is on the other side. Or, in engineer’s language, the aggregate contains “redundancy.” Or, again, from the point of view of a cybernetic observer, the information available on one side of the slash will restrain (i.e., reduce the probability of) wrong guessing. Examples: The letter T in a given location in a piece of written English prose proposes that the next letter is likely to be an H or an R or a vowel. It is possible to make a better than random guess across a slash which immediately follows the T. English spelling contains redundancy. From a part of an English sentence, delimited by a slash, it is possible to guess at the syntactic structure of the remainder of the sentence. From a tree visible above ground, it is possible to guess at the existence of roots below ground. The top provides information about the bottom.
The essence and raison d’être of communication is the creation of redundancy, meaning, pattern, predictability, information, and/or the reduction of the random by “restraint.”
The word “know” is not merely ambiguous in covering both connaître (to know through the senses, to recognize or perceive) and savoir (to know in the mind), but varies—actively shifts—in meaning for basic systemic reasons. That which we know through the senses can become knowledge in the mind. “I know the way to Cambridge” might mean that I have studied the map and can give you directions. It might mean that I can recall details all along the route. It might mean that when driving that route I recognize many details even though I could recall only a few. It might mean that when driving to Cambridge I can trust to “habit” to make me turn at the right points, without having to think where I am going. And so on.
“Le coeur a ses raisons que la raison ne connaît point” (“The heart has its reasons which the reason does not at all perceive”). It is this—the complex layering of consciousness and unconsciousness—that creates difficulty when we try to discuss art or ritual or mythology.
Classical Freudian theory assumed that dreams were a secondary product, created by “dream work.” Material unacceptable to conscious thought was supposedly translated into the metaphoric idiom of primary process to avoid waking the dreamer. And this may be true of those items of information which are held in the unconscious by the process of repression. As we have seen, however, many other sorts of information are inaccessible to conscious inspection, including most of the premises of mammalian interaction. It would seem to me sensible to think of these items as existing primarily in the idiom of primary process, only with difficulty to be translated into “rational” terms. In other words, I believe that much of early Freudian theory was upside down. At that time many thinkers regarded conscious reason as normal and self-explanatory while the unconscious was regarded as mysterious, needing proof, and needing explanation. Repression was the explanation, and the unconscious was filled with thoughts which could have been conscious but which repression and dream work had distorted. Today we think of consciousness as the mysterious, and of the computational methods of the unconscious, e.g., primary process, as continually active, necessary, and all-embracing.
These considerations are especially relevant in any attempt to derive a theory of art or poetry. Poetry is not a sort of distorted and decorated prose, but rather prose is poetry which has been stripped down and pinned to a Procrustean bed of logic. The computer men who would program the translation of languages sometimes forget this fact about the primary nature of language. To try to construct a machine to translate the art of one culture into the art of another would be equally silly.
In the cliché system of Anglo-Saxons, it is commonly assumed that it would be somehow better if what is unconscious were made conscious. Freud, even, is said to have said, “Where id was, there ego shall be,” as though such an increase in conscious knowledge and control would be both possible and, of course, an improvement. This view is the product of an almost totally distorted epistemology and a totally distorted view of what sort of thing a man, or any other organism, is.
In truth, our life is such that its unconscious components are continuously present in all their multiple forms. It follows that in our relationships we continuously exchange messages about these unconscious materials, and it becomes important also to exchange metamessages by which we tell each other what order and species of unconsciousness (or consciousness) attaches to our messages. In a merely pragmatic way, this is important because the orders of truth are different for different sorts of messages. Insofar as a message is conscious and voluntary, it could be deceitful. I can tell you that the cat is on the mat when in fact she is not there. I can tell you “I love you” when in fact I do not. But discourse about relationship is commonly accompanied by a mass of semivoluntary kinesic and autonomic signals which provide a more trustworthy comment on the verbal message. Similarly with skill, the fact of skill indicates the presence of large unconscious components in the performance.
It thus becomes relevant to look at any work of art with the question: What components of this message material had what orders of unconsciousness (or consciousness) for the artist? And this question, I believe, the sensitive critic usually asks, though perhaps not consciously. Art becomes, in this sense, an exercise in communicating about the species of unconsciousness. Or, if you prefer it, a sort of play behavior whose function is, amongst other things, to practice and make more perfect communication of this kind.
I am indebted to Dr. Anthony Forge for a quotation from Isadora Duncan: “If I could tell you what it meant, there would be no point in dancing it.” Her statement is ambiguous. In terms of the rather vulgar premises of our culture, we would translate the statement to mean: “There would then be no point in dancing it, because I could tell it to you, quicker and with less ambiguity, in words.” This interpretation goes along with the silly idea that it would be a good thing to be conscious of everything of which we are unconscious. But there is another possible meaning of Isadora Duncan’s remark: If the message were the sort of message that could be communicated in words, there would be no point in dancing it, but it is not that sort of message. It is, in fact, precisely the sort of message which would be falsified if communicated in words, because the use of words (other than poetry) would imply that this is a fully conscious and voluntary message, and this would be simply untrue. I believe that what Isadora Duncan or any artist is trying to communicate is more like: “This is a particular sort of partly unconscious message. Let us engage in this particular sort of partly unconscious communication.” Or perhaps: “This is a message about the interface between conscious and unconscious.”
“The heart has its reasons which the reason does not at all perceive.” Among Anglo-Saxons, it is rather usual to think of the “reasons” of the heart or of the unconscious as inchoate forces or pushes or heavings—what Freud called Trieben. To Pascal, a Frenchman, the matter was rather different, and he no doubt thought of the reasons of the heart as a body of logic or computation as precise and complex as the reasons of consciousness. (I have noticed that Anglo-Saxon anthropologists sometimes misunderstand the writings of Claude Lévi-Strauss for precisely this reason. They say he emphasizes too much the intellect and ignores the “feelings.” The truth is that he assumes that the heart has precise algorithms.) These algorithms of the heart, or, as they say, of the unconscious, are, however, coded and organized in a manner totally different from the algorithms of language. And since a great deal of conscious thought is structured in terms of the logics of language, the algorithms of the unconscious are doubly inaccessible. It is not only that the conscious mind has poor access to this material, but also the fact that when such access is achieved, e.g., in dreams, art, poetry, religion, intoxication, and the like, there is still a formidable problem of translation. This is usually expressed in Freudian language by saying that the operations of the unconscious are structured in terms of primary process, while the thoughts of consciousness (especially verbalized thoughts) are expressed in secondary process.
Primary process is characterized (e.g., by Fenichel) as lacking negatives, lacking tense, lacking in any identification of linguistic mood (i.e., no identification of indicative, subjunctive, optative, etc.) and metaphoric. These characterizations are based upon the experience of psychoanalysts, who must interpret dreams and the patterns of free association. It is also true that the subject matter of primary-process discourse is different from the subject matter of language and consciousness. Consciousness talks about things or persons, and attaches predicates to the specific things or persons which have been mentioned. In primary process the things or persons are usually not identified, and the focus of the discourse is upon the relationships which are asserted to obtain between them. This is really only another way of saying that the discourse of primary process is metaphoric. A metaphor retains unchanged the relationship which it “illustrates” while substituting other things or persons for the relata. In a simile, the fact that a metaphor is being used is marked by the insertion of the words “as if” or “like.” In primary process (as in art) there are no markers to indicate to the conscious mind that the message material is metaphoric.
For our present purposes it is important to note that the characteristics of primary process as described above are the inevitable characteristics of any communicational system between organisms who must use only iconic communication. This same limitation is characteristic of the artist and of the dreamer and of the prehuman mammal or bird. (The communication of insects is, perhaps, another matter.) In iconic communication, there is no tense, no simple negative, no modal marker. The absence of simple negatives is of especial interest because it often forces organisms into saying the opposite of what they mean in order to get across the proposition that they mean the opposite of what they say. Two dogs approach each other and need to exchange the message: “We are not going to fight.” But the only way in which fight can be mentioned in iconic communication is by the showing of fangs. It is then necessary for the dogs to discover that this mention of fight was, in fact, only exploratory. They must, therefore, explore what the showing of fangs means. They therefore engage in a brawl; discover that neither ultimately intends to kill the other; and, after that, they can be friends.
A very brief consideration of the problem shows that it is not conceivably possible for any system to be totally conscious. Suppose that on the screen of consciousness there are reports from many parts of the total mind, and consider the addition to consciousness of those reports necessary to cover what is, at a given stage of evolution, not already covered. This addition will involve a very great increase in the circuit structure of the brain but still will not achieve total coverage. The next step will be to cover the processes and events occurring in the circuit structure which we have just added. And so on. Clearly, the problem is insoluble, and every next step in the approach to total consciousness will involve a great increase in the circuitry required. It follows that all organisms must be content with rather little consciousness, and that if consciousness has any useful functions whatever (which has never been demonstrated but is probably true), then economy in consciousness will be of the first importance. No organism can afford to be conscious of matters with which it could deal at unconscious levels. This is the economy achieved by habit formation.
With almost no exceptions, the behaviors called art or their products (also called art) have two characteristics: they require or exhibit skill, and they contain redundancy or pattern. But those two characteristics are not separate: the skill is first in maintaining and then in modulating the redundancies.
Form and Pathology in Relationship
If anybody doubts that we tend to regard purpose and instrumentality as distinctively human, let him consider the old quip about eating and living. The creature who “eats to live” is the highest human; he who “lives to eat” is coarser-grained, but still human; but if he just “eats and lives,” without attributing instrumentality or a spurious priority in time sequence to either process, he is rated only among the animals, and some, less kind, will regard him as vegetable.
In every case the anthropologist is concerned not with mere description but with a slightly higher degree of abstraction, a wider degree of generalization. His first task is the meticulous collection of masses of concrete observations of native life—but the next step is not a mere summarizing of these data; it is rather to interpret the data in an abstract language which shall transcend and comprehend the vocabulary and notions explicit and implicit in our own culture. It is not possible to give a scientific description of a native culture in English words; the anthropologist must devise a more abstract vocabulary in terms of which both our own and the native culture can be described.
This then is the type of discipline which has enabled Dr. Mead to point out that a discrepancy—a basic and fundamental discrepancy—exists between “social engineering,” manipulating people in order to achieve a planned blueprint society, and the ideals of democracy, the “supreme worth and moral responsibility of the individual human person.” The two conflicting motifs have long been implicit in our culture, science has had instrumental leanings since before the Industrial Revolution, and emphasis upon individual worth and responsibility is even older. The threat of conflict between the two motifs has only come recently, with increasing consciousness of, and emphasis upon, the democratic motif and simultaneous spread of the instrumental motif. Finally, the conflict is now a life-or-death struggle over the role which the social sciences shall play in the ordering of human relationships. It is hardly an exaggeration to say that this war is ideologically about just this—the role of the social sciences. Are we to reserve the techniques and the right to manipulate people as the privilege of a few planning, goal-oriented, and power-hungry individuals, to whom the instrumentality of science makes a natural appeal? Now that we have the techniques, are we, in cold blood, going to treat people as things? Or what are we going to do with these techniques?
If the Balinese is kept busy and happy by a nameless, shapeless fear, not located in space or time, we might be kept on our toes by a nameless, shapeless, unlocated hope of enormous achievement. For such a hope to be effective, the achievement need scarcely be defined. All we need to be sure of is that, at any moment, achievement may be just around the corner, and, true or false, this can never be tested. We have got to be like those few artists and scientists who work with this urgent sort of inspiration, the urgency that comes from feeling that great discovery, the answer to all our problems, or great creation, the perfect sonnet, is always only just beyond our reach, or like the mother of a child who feels that, provided she pay constant enough attention, there is a real hope that her child may be that infinitely rare phenomenon, a great and happy person.
In the dim region where art, magic, and religion meet and overlap, human beings have evolved the “metaphor that is meant,” the flag which men will die to save, and the sacrament that is felt to be more than “an outward and visible sign, given unto us.” Here we can recognize an attempt to deny the difference between map and territory, and to get back to the absolute innocence of communication by means of pure mood-signs.
The dependence of psychotherapy upon the manipulation of frames follows from the fact that therapy is an attempt to change the patient’s metacommunicative habits. Before therapy, the patient thinks and operates in terms of a certain set of rules for the making and understanding of messages. After successful therapy, he operates in terms of a different set of such rules. (Rules of this sort are in general, unverbalized, and unconscious both before and after.) It follows that, in the process of therapy, there must have been communication at a level meta to these rules. There must have been communication about a change in rules. But such a communication about change could not conceivably occur in messages of the type permitted by the patient’s metacommunicative rules as they existed either before or after therapy.
It was suggested above that the paradoxes of play are characteristic of an evolutionary step. Here we suggest that similar paradoxes are a necessary ingredient in that process of change which we call psychotherapy. The resemblance between the process of therapy and the phenomenon of play is, in fact, profound. Both occur within a delimited psychological frame, a spatial and temporal bounding of a set of interactive messages. In both play and therapy, the messages have a special and peculiar relationship to a more concrete or basic reality. Just as the pseudocombat of play is not real combat, so also the pseudolove and pseudohate of therapy are not real love and hate. The “transfer” is discriminated from real love and hate by signals invoking the psychological frame; and indeed it is this frame which permits the transfer to reach its full intensity and to be discussed between patient and therapist.
The formal characteristics of the therapeutic process may be illustrated by building up a model in stages. Imagine first two players who engage in a game of canasta according to a standard set of rules. So long as these rules govern and are unquestioned by both players, the game is unchanging, i.e.., no therapeutic change will occur. (Indeed many attempts at psychotherapy fail for this reason.) We may imagine, however, that at a certain moment the two canasta players cease to play canasta and start a discussion of the rules. Their discourse is now of a different logical type from that of their play. At the end of this discussion, we can imagine that they return to playing but with modified rules. This sequence of events is, however, still an imperfect model of therapeutic interaction, though it illustrates our contention that therapy necessarily involves a combination of discrepant logical types of discourse. Our imaginary players avoided paradox by separating their discussion of the rules from their play, and it is precisely this separation that is impossible in psychotherapy. As we see it, the process of psychotherapy is a framed interaction between two persons, in which the rules are implicit but subject to change. Such change can only be proposed by experimental action, but every such experimental action, in which a proposal to change the rules is implicit, is itself a part of the ongoing game. It is this combination of logical types within the single meaningful act that gives to therapy the character not of a rigid game like canasta but, instead, that of an evolving system of interaction. The play of kittens or otters has this character.
Our central thesis may be summed up as a statement of the necessity of the paradoxes of abstraction. It is not merely bad natural history to suggest that people might or should obey the Theory of Logical Types in their communications; their failure to do this is not due to mere carelessness or ignorance. Rather, we believe that the paradoxes of abstraction must make their appearance in all communication more complex than that of mood-signals, and that without these paradoxes the evolution of communication would be at an end. Life would then be an endless interchange of stylized messages, a game with rigid rules, unrelieved by change or humor.
All messages and parts of messages are like phrases or segments of equations which a mathematician puts in brackets. Outside the brackets there may always be a qualifier or multiplier which will alter the whole tenor of the phrase. Moreover, these qualifiers can always be added, even years later. They do not have to precede the phrase inside the brackets. Otherwise, there could be no psychotherapy. The patient would be entitled and even compelled to argue, “My mother slapped me down in such and such ways, and, therefore, I am now sick; and because those traumata occurred in the past they cannot be altered, and I, therefore, cannot get well.” In the realm of communication, the events of the past constitute a chain of old horseshoes so that the meaning of that chain can be changed and is continually being changed. What exists today are only messages about the past which we call memories, and these messages can always be framed and modulated from moment to moment.
Every science, like every person, has a duty toward its neighbors, not perhaps to love them as itself, but still to lend them its tools, to borrow tools from them, and, generally, to keep the neighboring sciences straight. We may perhaps judge of the importance of an advance in any one science in terms of the changes which this advance compels the neighboring sciences to make in their methods and in their thinking. But always there is the rule of parsimony. The changes which we in the behavioral sciences may ask for in genetics, or in philosophy, or in information theory must always be minimal. The unity of science as a whole is achieved by this system of minimal demands imposed by each science upon its neighbors, and—not a little—by the lending of conceptual tools and patterns which occurs among the various sciences.
It is necessary first to insist that in the world of communication the only relevant entities or “realities” are messages, including in this term parts of messages, relations between messages, significant gaps in messages, and so on. The perception of an event or object or relation is real. It is a neurophysiological message. But the event itself or the object itself cannot enter this world and is, therefore, irrelevant and, to that extent, unreal. Conversely, a message has no reality or relevance qua message, in the Newtonian world: it there is reduced to sound waves or printer’s ink. By the same token, the “contexts” and “contexts of contexts” upon which I am insisting are only real or relevant insofar as they are communicationally effective, i.e., function as messages or modifiers of messages.
The difference between the Newtonian world and the world of communication is simply this: that the Newtonian world ascribes reality to objects and achieves its simplicity by excluding the context of the context—excluding indeed all metarelationships—a fortiori excluding an infinite regress of such relations. In contrast, the theorist of communication insists upon examining the metarelationships while achieving its simplicity by excluding all objects. This world, of communication, is a Berkeleyan world, but the good bishop was guilty of understatement. Relevance or reality must be denied not only to the sound of the tree which falls unheard in the forest but also to this chair which I can see and on which I am sitting. My perception of the chair is communicationally real, and that on which I sit is, for me, only an idea, a message in which I put my trust.
“In my thought, one thing is as good as another in this world, and the shoe of a horse will do,” because in thought and in experience there are no things, but only messages and the like. In this world, indeed, I, as a material object, have no relevance and, in this sense, no reality. “I,” however, exist in the communicational world as an essential element in the syntax of my experience and in the experience of others, and the communications of others may damage my identity, even to the point of breaking up the organization of my experience.
We social scientists would do well to hold back our eagerness to control that world which we so imperfectly understand. The fact of our imperfect understanding should not be allowed to feed our anxiety and so increase the need to control. Rather, our studies could be inspired by a more ancient, but today less honored, motive: a curiosity about the world of which we are part. The rewards of such work are not power but beauty. It is a strange fact that every great scientific advance—not least the advances which Newton achieved—has been elegant.
The explanatory world of substance can invoke no differences and no ideas but only forces and impacts. And, per contra, the world of form and communication invokes no things, forces, or impacts but only differences and ideas. (A difference which makes a difference is an idea. It is a “bit,” a unit of information.)
Clearly there are in the mind no objects or events—no pigs, no coconut palms, and no mothers. The mind contains only transforms, percepts, images, etc., and rules for making these transforms, percepts, etc. In what form these rules exist we do not know, but presumably they are embodied in the very machinery which creates the transforms. The rules are certainly not commonly explicit as conscious “thoughts.” In any case, it is nonsense to say that a man was frightened by a lion, because a lion is not an idea. The man makes an idea of the lion. The explanatory world of substance can invoke no differences and no ideas but only forces and impacts. And, per contra, the world of form and communication invokes no things, forces, or impacts but only differences and ideas. (A difference which makes a difference is an idea. It is a “bit,” a unit of information.)
Bind theory asserts that there is an experiential component in the determination or etiology of schizophrenic symptoms and related behavioral patterns, such as humor, art, poetry, etc. Notably the theory does not distinguish between these subspecies. Within its terms there is nothing to determine whether a given individual shall become a clown, a poet, a schizophrenic, or some combination of these. We deal not with a single syndrome but with a genus of syndromes, most of which are not conventionally regarded as pathological. Let me coin the word “transcontextual” as a general term for this genus of syndromes. It seems that both those whose life is enriched by transcontextual gifts and those who are impoverished by transcontextual confusions are alike in one respect: for them there is always or often a “double take.” A falling leaf, the greeting of a friend, or a “primrose by the river’s brim” is not “just that and nothing more.” Exogenous experience may be framed in the contexts of dream, and internal thought may be projected into the contexts of the external world. And so on. For all this, we seek a partial explanation in learning and experience.
Alcoholics are philosophers in that universal sense in which all human beings (and all mammals) are guided by highly abstract principles of which they are either quite unconscious, or unaware that the principle governing their perception and action is philosophic. A common misnomer for such principles is “feelings.” This misnomer arises naturally from the Anglo-Saxon epistemological tendency to reify or attribute to the body all mental phenomena which are peripheral to consciousness. And the misnomer is, no doubt, supported by the fact that the exercise and/or frustration of these principles is often accompanied by visceral and other bodily sensations. I believe, however, that Pascal was correct when he said, “The heart has its reasons which the reason does not at all perceive.” But the reader must not expect the alcoholic to present a consistent picture. When the underlying epistemology is full of error, derivations from it are inevitably either self-contradictory or extremely restricted in scope. A consistent corpus of theorems cannot be derived from an inconsistent body of axioms. In such cases, the attempt to be consistent leads either to the great proliferation of complexity characteristic of psychoanalytic theory and Christian theology or to the extremely narrow view characteristic of contemporary behaviorism.
Biology and Evolution
When your cat is trying to tell you to give her food, how does she do it? She has no word for food or for milk. What she does is to make movements and sounds that are characteristically those that a kitten makes to a mother cat. If we were to translate the cat’s message into words, it would not be correct to say that she is crying “Milk!” Rather, she is saying something like “Mama!” Or, perhaps still more correctly, we should say that she is asserting “Dependency! Dependency!” The cat talks in terms of patterns and contingencies of relationship, and from this talk it is up to you to take a deductive step, guessing that it is milk that the cat wants. It is the necessity for this deductive step which marks the difference between preverbal mammalian communication and both the communication of bees and the languages of men.
What was extraordinary—the great new thing—in the evolution of human language was not the discovery of abstraction or generalization, but the discovery of how to be specific about something other than relationship. Indeed, this discovery, though it has been achieved, has scarcely affected the behavior even of human beings. If A says to B, “The plane is scheduled to leave at 6.30,” B rarely accepts this remark as simply and solely a statement of fact about the plane. More often he devotes a few neurons to the question, “What does A’s telling me this indicate for my relationship to A?” Our mammalian ancestry is very near the surface, despite recently acquired linguistic tricks.
Analogic versus Digital Communication
How does it happen that the paralinguistics and kinesics of men from strange cultures, and even the paralinguistics of other terrestrial mammals, are at least partly intelligible to us, whereas the verbal languages of men from strange cultures seem to be totally opaque?
We know, of course, why gestures and tones of voice are partly intelligible while foreign languages are unintelligible. It is because language is digital and kinesics and paralinguistics are analogic. The essence of the matter is that in digital communication a number of purely conventional signs—1, 2, 3, X, Y, and so on—are pushed around according to rules called algorithms. The signs themselves have no simple connection (e.g., correspondence of magnitude) with what they stand for. The numeral “5” is not bigger than the numeral “3.” It is true that if we remove the crossbar from “7” we obtain the numeral “1”; but the crossbar does not, in any sense, stand for “6.” A name usually has only a purely conventional or arbitrary connection with the class named. The numeral “5” is only the name of a magnitude. It is nonsense to ask if my telephone number is larger than yours, because the telephone exchange is a purely digital computer. It is not fed with magnitudes, but only with names of positions on a matrix. In analogic communication, however, real magnitudes are used, and they correspond to real magnitudes in the subject of discourse.
Verbal language is almost (but not quite) purely digital. The word “big” is not bigger than the word “little”; and in general there is nothing in the pattern (i.e., the system of interrelated magnitudes) in the word “table” which would correspond to the system of interrelated magnitudes in the object denoted. On the other hand, in kinesic and paralinguistic communication, the magnitude of the gesture, the loudness of the voice, the length of the pause, the tension of the muscle, and so forth—these magnitudes commonly correspond (directly or inversely) to magnitudes in the relationship that is the subject of discourse.
We humans become very uncomfortable when somebody starts to interpret our postures and gestures by translating them into words about relationship. We much prefer that our messages on this subject remain analogic, unconscious, and involuntary. We tend to distrust the man who can simulate messages about relationship.
Information, in the technical sense, is that which excludes certain alternatives. The machine with a governor does not elect the steady state; it prevents itself from staying in any alternative state; and in all such cybernetic systems, corrective action is brought about by difference. In the jargon of the engineers, the system is “error activated.” The difference between some present state and some “preferred” state activates the corrective response. The technical term “information” may be succinctly defined as any difference which makes a difference in some later event. This definition is fundamental for all analysis of cybernetic systems and organization. The definition links such analysis to the rest of science, where the causes of events are commonly not differences but forces, impacts, and the like. The link is classically exemplified by the heat engine, where available energy (i.e., negative entropy) is a function of a difference between two temperatures. In this classical instance, “information” and “negative entropy” overlap.
Epistemology and Ecology
It may be useful to describe some of the peculiarities of cybernetic explanation. Causal explanation is usually positive. We say that billiard ball B moved in such and such a direction because billiard ball A hit it at such and such an angle. In contrast to this, cybernetic explanation is always negative. We consider what alternative possibilities could conceivably have occurred and then ask why many of the alternatives were not followed, so that the particular event was one of those few which could, in fact, occur. The classical example of this type of explanation is the theory of evolution under natural selection. According to this theory, those organisms which were not both physiologically and environmentally viable could not possibly have lived to reproduce. Therefore, evolution always followed the pathways of viability. As Lewis Carroll has pointed out, the theory explains quite satisfactorily why there are no bread-and-butter-flies today.
In cybernetic language, the course of events is said to be subject to restraints, and it is assumed that, apart from such restraints, the pathways of change would be governed only by equality of probability. In fact, the “restraints” upon which cybernetic explanation depends can in all cases be regarded as factors which determine inequality of probability. If we find a monkey striking a typewriter apparently at random but in fact writing meaningful prose, we shall look for restraints, either inside the monkey or inside the typewriter. Perhaps the monkey could not strike inappropriate letters; perhaps the type bars could not move if improperly struck; perhaps incorrect letters could not survive on the paper. Somewhere there must have been a circuit which could identify error and eliminate it.
Another tactic of mathematical proof which has its counterpart in the construction of cybernetic explanations is the use of “mapping” or rigorous metaphor. An algebraic proposition may, for example, be mapped onto a system of geometric coordinates and there proven by geometric methods. In cybernetics, mapping appears as a technique of explanation whenever a conceptual “model” is invoked or, more concretely, when a computer is used to simulate a complex communicational process. But this is not the only appearance of mapping in this science. Formal processes of mapping, translation, or transformation are, in principle, imputed to every step of any sequence of phenomena which the cyberneticist is attempting to explain. These mappings or transformations may be very complex, e.g., where the output of some machine is regarded as a transform of the input; or they may be very simple, e.g., where the rotation of a shaft at a given point along its length is regarded as a transform (albeit identical) of its rotation at some previous point. The relations which remain constant under such transformation may be of any conceivable kind.
Because the subject matter of cybernetics is the propositional or informational aspect of the events and objects in the natural world, this science is forced to procedures rather different from those of the other sciences. The differentiation, for example, between map and territory, which the semanticists insist that scientists shall respect in their writings must, in cybernetics, be watched for in the very phenomena about which the scientist writes. Expectably, communicating organisms and badly programmed computers will mistake map for territory; and the language of the scientist must be able to cope with such anomalies. In human behavioral systems, especially in religion and ritual and wherever primary process dominates the scene, the name often is the thing named. The bread is the Body, and the wine is the Blood.
In addition to the restraints due to the limited economics of alternatives, two other categories of restraint must be discussed: restraints related to “feedback” and restraints related to “redundancy.”
For purposes of cybernetic explanation, when a machine is observed to be (improbably) moving at a constant rate, even under varying load, we shall look for restraints—e.g., for a circuit which will be activated by changes in rate and which, when activated, will operate upon some variable (e.g., the fuel supply) in such a way as to diminish the change in rate. When the monkey is observed to be (improbably) typing prose, we shall look for some circuit which is activated whenever he makes a “mistake” and which, when activated, will delete the evidence of that mistake at the position where it occurred.
The cybernetic method of negative explanation raises the question: Is there a difference between “being right” and “not being wrong”? Should we say of the rat in a maze that he has “learned the right path” or should we say only that he has learned “to avoid the wrong paths”? Subjectively, I feel that I know how to spell a number of English words, and I am certainly not aware of discarding as unrewarding the letter K when I have to spell the word “many.” Yet, in the first level cybernetic explanation, I should be viewed as actively discarding the alternative K when I spell “many.” The question is not trivial and the answer is both subtle and fundamental: choices are not all at the same level. I may have to avoid error in my choice of the word “many” in a given context, discarding the alternatives, “few,” “several,” “frequent,” etc. But if I can achieve this higher level choice on a negative base, it follows that the word “many” and its alternatives somehow must be conceivable to me—must exist as distinguishable and possibly labeled or coded patterns in my neural processes. If they do, in some sense, exist, then it follows that, after making the higher level choice of what word to use, I shall not necessarily be faced with alternatives at the lower level. It may become unnecessary for me to exclude the letter K from the word “many.” It will be correct to say that I know positively how to spell “many”; not merely that I know how to avoid making mistakes in spelling that word.
The occurrence of the letter K in a given location in an English prose message is not a purely random event in the sense that there was ever an equal probability that any other of the twenty-five letters might have occurred in that location. Some letters are more common in English than others, and certain combinations of letters are more common than others. There is, thus, a species of patterning which partly determines which letters shall occur in which slots. As a result: if the receiver of the message had received the entire rest of the message but had not received the particular letter K which we are discussing, he might have been able, with better than random success, to guess that the missing letter was, in fact, K. To the extent that this was so, the letter K did not, for that receiver, exclude the other twenty-five letters because these were already partly excluded by information which the recipient received from the rest of the message. This patterning or predictability of particular events within a larger aggregate of events is technically called “redundancy.”
If then we say that a message has “meaning” or is “about” some referent, what we mean is that there is a larger universe of relevance consisting of message-plus-referent, and that redundancy or pattern or predictability is introduced into this universe by the message. If I say to you “It is raining,” this message introduces redundancy into the universe, message-plus-raindrops, so that from the message alone you could have guessed—with better than random success—something of what you would see if you looked out of the window. The universe, message-plus-referent, is given pattern or form—in the Shakespearean sense, the universe is informed by the message; and the “form” of which we are speaking is not in the message nor is it in the referent. It is a correspondence between message and referent.
All that is not information, not redundancy, not form and not restraints—is noise, the only possible source of new patterns.
Discussion of the evolutionary and other relationships between the communication systems of men and those of other animals has made it very clear that the coding devices characteristic of verbal communication differ profoundly from those of kinesics and paralanguage. But the point has been made that there is a great deal of resemblance between the codes of kinesics and paralanguage and the codes of nonhuman mammals. We may, I think, state categorically that man’s verbal system is not derived in any simple way from these preponderantly iconic codes. There is a general popular belief that in the evolution of man, language replaced the cruder systems of the other animals. I believe this to be totally wrong and would argue as follows:
In any complex functional system capable of adaptive evolutionary change, when the performance of a given function is taken over by some new and more efficient method, the old method falls into disuse and decay. The technique of making weapons by the knapping of flint deteriorated when metals came into use. This decay of organs and skills under evolutionary replacement is a necessary and inevitable systemic phenomenon. If, therefore, verbal language were in any sense an evolutionary replacement of communication by means of kinesics and paralanguage, we would expect the old, preponderantly iconic systems to have undergone conspicuous decay. Clearly they have not. Rather, the kinesics of men have become richer and more complex, and paralanguage has blossomed side by side with the evolution of verbal language. Both kinesics and paralanguage have been elaborated into complex forms of art, music, ballet, poetry, and the like, and, even in everyday life, the intricacies of human kinesic communication, facial expression, and vocal intonation far exceed anything that any other animal is known to produce. The logician’s dream that men should communicate only by unambiguous digital signals has not come true and is not likely to.
I suggest that this separate burgeoning evolution of kinesics and paralanguage alongside the evolution of verbal language indicates that our iconic communication serves functions totally different from those of language and, indeed, performs functions which verbal language is unsuited to perform.
When boy says to girl, “I love you,” he is using words to convey that which is more convincingly conveyed by his tone of voice and his movements; and the girl, if she has any sense, will pay more attention to those accompanying signs than to the words. There are people—professional actors, confidence tricksters, and others—who are able to use kinesics and paralinguistic communication with a degree of voluntary control comparable to that voluntary control which we all think we have over the use of words. For these people who can lie with kinesics, the special usefulness of nonverbal communication is reduced. It is a little more difficult for them to be sincere and still more difficult for them to be believed to be sincere. They are caught in a process of diminishing returns such that, when distrusted, they try to improve their skill in simulating paralinguistic and kinesic sincerity. But this is the very skill which led others to distrust them.
It seems that the discourse of nonverbal communication is precisely concerned with matters of relationship—love, hate, respect, fear, dependency, etc.—between self and vis-à-vis or between self and environment and that the nature of human society is such that falsification of this discourse rapidly becomes pathogenic. From an adaptive point of view, it is therefore important that this discourse be carried on by techniques which are relatively unconscious and only imperfectly subject to voluntary control. In the language of neurophysiology, the controls of this discourse must be placed in the brain caudad of the controls of true language. If this general view of the matter be correct, it must follow that to translate kinesics or paralinguistic messages into words is likely to introduce gross falsification due not merely to the human propensity for trying to falsify statements about “feelings” and relationship and to the distortions which arise whenever the products of one system of coding are dissected onto the premises of another, but especially to the fact that all such translation must give to the more or less unconscious and involuntary iconic message the appearance of conscious intent.
An interesting intermediate between the iconic coding of animals and the verbal coding of human speech can be recognized in human dreaming and human myth. In psychoanalytic theory, the productions of dream process are said to be characterized by “primary-process” thinking. Dreams, whether verbal or not, are to be considered as metaphoric statements, i.e., the referents of dream are relationships which the dreamer, consciously or unconsciously, perceives in his waking world. As in all metaphor, the relata remain unmentioned and in their places appear other items such that the relationships between these substitute items shall be the same as those between the relata in the waking world. To identify the relata in the waking world to which the dream refers would convert the metaphor into a simile, and, in general, dreams contain no message material which overtly performs this function. There is no signal in the dream which tells the dreamer that this is metaphor or what the referent of the metaphor may be. Similarly, dream contains no tenses. Time is telescoped, and representations of past events in real or distorted forms may have the present as their referent—or vice versa. The patterns of dream are timeless.
In a theater, the audience is informed by the curtain and the framing of the stage that the action on the stage is “only” a play. From within that frame the producers and actors may attempt to involve the audience in an illusion of reality as seemingly direct as the experience of dream. And, as in dream, the play has metaphoric reference to the outside world. But in dream, unless the sleeper be partly conscious of the fact of sleep, there is no curtain and no framing of the action. The partial negative—“This is only metaphor”—is absent. I suggest that this absence of metacommunicative frames and the persistence in dream of pattern recognition are archaic characteristics in an evolutionary sense. If this be correct, then an understanding of dream should throw light both on how iconic communication operates among animals and on the mysterious evolutionary step from the iconic to the verbal.
Under the limitation imposed by the lack of a metacommunicative frame, it is clearly impossible for dream to make an indicative statement, either positive or negative. As there can be no frame which labels the content as “metaphoric,” so there can be no frame to label the content as “literal.” Dream can imagine rain or drought, but it can never assert “It is raining” or “It is not raining.” Therefore, as we have seen, the usefulness in imagining “rain” or “drought” is limited to their metaphoric aspects. Dream can propose the applicability of pattern. It can never assert or deny this applicability. Still less can it make an indicative statement about any identified referent, since no referent is identified. The pattern is the thing.
Dr. Laing noted that the obvious can be very difficult for people to see. That is because people are self-corrective systems. They are self-corrective against disturbance, and if the obvious is not of a kind that they can easily assimilate without internal disturbance, their self-corrective mechanisms work to sidetrack it, to hide it, even to the extent of shutting the eyes if necessary, or shutting off various parts of the process of perception. Disturbing information can be framed like a pearl so that it doesn’t make a nuisance of itself; and this will be done, according to the understanding of the system itself of what would be a nuisance. This too—the premise regarding what would cause disturbance—is something which is learned and then becomes perpetuated or conserved.
There is one compartmentalization which is in many ways mysterious but certainly of crucial importance in man’s life. I refer to the “semipermeable” linkage between consciousness and the remainder of the total mind. A certain limited amount of information about what’s happening in this larger part of the mind seems to be relayed to what we may call the screen of consciousness. But what gets to consciousness is selected; it is a systematic (not random) sampling of the rest.
We therefore have to settle for very limited consciousness, and the question arises: How is the selecting done? On what principles does your mind select that which “you” will be aware of? And, while not much is known of these principles, something is known, though the principles at work are often not themselves accessible to consciousness. First of all, much of the input is consciously scanned, but only after it has been processed by the totally unconscious process of perception. The sensory events are packaged into images and these images are then “conscious.” I, the conscious I, see an unconsciously edited version of a small percentage of what affects my retina. I am guided in my perception by purposes. I see who is attending, who is not, who is understanding, who is not, or at least I get a myth about this subject, which may be quite correct. I am interested in getting that myth as I talk. It is relevant to my purposes that you hear me.
What happens to the picture of a cybernetic system—an oak wood or an organism—when that picture is selectively drawn to answer only questions of purpose? Consider the state of medicine today. It’s called medical science. What happens is that doctors think it would be nice to get rid of polio, or typhoid, or cancer. So they devote research money and effort to focusing on these “problems,” or purposes. At a certain point Dr. Salk and others “solve” the problem of polio. They discover a solution of bugs which you can give to children so that they don’t get polio. This is the solution to the problem of polio. At this point, they stop putting large quantities of effort and money into the problem of polio and go on to the problem of cancer, or whatever it may be. Medicine ends up, therefore, as a total science, whose structure is essentially that of a bag of tricks. Within this science there is extraordinarily little knowledge of the sort of things I’m talking about; that is, of the body as a systemically cybernetically organized self-corrective system. Its internal interdependencies are minimally understood. What has happened is that purpose has determined what will come under the inspection or consciousness of medical science. If you allow purpose to organize that which comes under your conscious inspection, what you will get is a bag of tricks—some of them very valuable tricks. It is an extraordinary achievement that these tricks have been discovered; all that I don’t argue. But still we do not know two-penn’orth, really, about the total network system. Cannon wrote a book on The Wisdom of the Body, but nobody has written a book on the wisdom of medical science, because wisdom is precisely the thing which it lacks. Wisdom I take to be the knowledge of the larger interactive system—that system which, if disturbed, is likely to generate exponential curves of change.
Consciousness operates in the same way as medicine in its sampling of the events and processes of the body and of what goes on in the total mind. It is organized in terms of purpose. It is a short-cut device to enable you to get quickly at what you want; not to act with maximum wisdom in order to live, but to follow the shortest logical or causal path to get what you next want, which may be dinner; it may be a Beethoven sonata; it may be sex. Above all, it may be money or power.
But you may say: “Yes, but we have lived that way for a million years.” Consciousness and purpose have been characteristic of man for at least a million years, and may have been with us a great deal longer than that. I am not prepared to say that dogs and cats are not conscious, still less that porpoises are not conscious. So you may say: “Why worry about that?” But what worries me is the addition of modern technology to the old system. Today the purposes of consciousness are implemented by more and more effective machinery, transportation systems, airplanes, weaponry, medicine, pesticides, and so forth. Conscious purpose is now empowered to upset the balances of the body, of society, and of the biological world around us. A pathology—a loss of balance—is threatened.
Purposive consciousness pulls out, from the total mind, sequences which do not have the loop structure which is characteristic of the whole systemic structure. If you follow the “common-sense” dictates of consciousness you become, effectively, greedy and unwise—again I use “wisdom” as a word for recognition of and guidance by a knowledge of the total systemic creature. Lack of systemic wisdom is always punished. We may say that the biological systems—the individual, the culture, and the ecology—are partly living sustainers of their component cells or organisms. But the systems are nonetheless punishing of any species unwise enough to quarrel with its ecology. Call the systemic forces “God” if you will.
Even within the individual human being, control is limited. We can in some degree set ourselves to learn even such abstract characteristics as arrogance or humility, but we are not by any means the captains of our souls. It is, however, possible that the remedy for ills of conscious purpose lies with the individual. There is what Freud called the royal road to the unconscious. He was referring to dreams, but I think we should lump together dreams and the creativity of art, or the perception of art, and poetry and such things. And I would include with these the best of religion. These are all activities in which the whole individual is involved. The artist may have a conscious purpose to sell his picture, even perhaps a conscious purpose to make it. But in the making he must necessarily relax that arrogance in favor of a creative experience in which his conscious mind plays only a small part. We might say that in creative art man must experience himself—his total self—as a cybernetic model.
It is characteristic of the 1960s that a large number of people are looking to the psychedelic drugs for some sort of wisdom or some sort of enlargement of consciousness, and I think this symptom of our epoch probably arises as an attempt to compensate for our excessive purposiveness. But I am not sure that wisdom can be got that way. What is required is not simply a relaxation of consciousness to let the unconscious material gush out. To do this is merely to exchange one partial view of the self for the other partial view. I suspect that what is needed is the synthesis of the two views and this is more difficult. My own slight experience of LSD led me to believe that Prospero was wrong when he said, “We are such stuff as dreams are made on.” It seemed to me that pure dream was, like pure purpose, rather trivial. It was not the stuff of which we are made, but only bits and pieces of that stuff. Our conscious purposes, similarly, are only bits and pieces. The systemic view is something else again.
A peculiar sociological phenomenon has arisen in the last one hundred years which perhaps threatens to isolate conscious purpose from many corrective processes which might come out of less conscious parts of the mind. The social scene is nowadays characterized by the existence of a large number of self-maximizing entities which, in law, have something like the status of “persons”—trusts, companies, political parties, unions, commercial and financial agencies, nations, and the like. In biological fact, these entities are precisely not persons and are not even aggregates of whole persons. They are aggregates of parts of persons. When Mr. Smith enters the board room of his company, he is expected to limit his thinking narrowly to the specific purposes of the company or to those of that part of the company which he “represents.” Mercifully it is not entirely possible for him to do this and some company decisions are influenced by considerations which spring from wider and wiser parts of the mind. But ideally, Mr. Smith is expected to act as a pure, uncorrected consciousness—a dehumanized creature.
Martin Buber has classified interpersonal relationships in a relevant manner. He differentiates “I-Thou” relations from “I-It” relations, defining the latter as the normal pattern of interaction between man and inanimate objects. The “I-It” relationship he also regards as characteristic of human relations wherever purpose is more important than love. But if the complex cybernetic structure of societies and ecosystems is in some degree analogous to animation, then it would follow that an “I-Thou” relationship is conceivable between man and his society or ecosystem.
What sort of a thing is this, which we call “organism plus environment”? Let us go back to the original statement for which Korzybski is most famous—the statement that the map is not the territory. This statement came out of a very wide range of philosophic thinking, going back to Greece, and wriggling through the history of European thought over the last 2000 years. In this history, there has been a sort of rough dichotomy and often deep controversy. There has been a violent enmity and bloodshed. It all starts, I suppose, with the Pythagoreans versus their predecessors, and the argument took the shape of “Do you ask what it’s made of—earth, fire, water, etc?” Or do you ask, “What is its pattern?” Pythagoras stood for inquiry into pattern rather than inquiry into substance. That controversy has gone through the ages, and the Pythagorean half of it has, until recently, been on the whole the submerged half. The Gnostics follow the Pythagoreans, and the alchemists follow the Gnostics, and so on. The argument reached a sort of climax at the end of the eighteenth century when a Pythagorean evolutionary theory was built and then discarded—a theory which involved Mind.
The evolutionary theory of the late eighteenth century, the Lamarckian theory, which was the first organized transformist theory of evolution, was built out of a curious historical background which has been described by Lovejoy in The Great Chain of Being. Before Lamarck, the organic world, the living world, was believed to be hierarchic in structure, with Mind at the top. The chain, or ladder, went down through the angels, through men, through the apes, down to the infusoria or protozoa, and below that to the plants and stones. What Lamarck did was to turn that chain upside down. He observed that animals changed under environmental pressure. He was incorrect, of course, in believing that those changes were inherited, but in any case, these changes were for him the evidence of evolution. When he turned the ladder upside down, what had been the explanation, namely, the Mind at the top, now became that which had to be explained.
Now, at last, with the discovery of cybernetics, systems theory, information theory, and so on, we begin to have a formal base enabling us to think about mind and enabling us to think about all these problems in a way which was totally heterodox from about 1850 through to World War II. What I have to talk about is how the great dichotomy of epistemology has shifted under the impact of cybernetics and information theory. We can now say—or at any rate, can begin to say—what we think a mind is.
Let us start from the evolutionary side. It is now empirically clear that Darwinian evolutionary theory contained a very great error in its identification of the unit of survival under natural selection. The unit which was believed to be crucial and around which the theory was set up was either the breeding individual or the family line or the subspecies or some similar homogeneous set of conspecifics. Now I suggest that the last hundred years have demonstrated empirically that if an organism or aggregate of organisms sets to work with a focus on its own survival and thinks that that is the way to select its adaptive moves, its “progress” ends up with a destroyed environment. If the organism ends up destroying its environment, it has in fact destroyed itself. And we may very easily see this process carried to its ultimate reductio ad absurdum in the next twenty years. The unit of survival is not the breeding organism, or the family line, or the society.
The old unit has already been partly corrected by the population geneticists. They have insisted that the evolutionary unit is, in fact, not homogeneous. A wild population of any species consists always of individuals whose genetic constitution varies widely. In other words, potentiality and readiness for change is already built into the survival unit. The heterogeneity of the wild population is already one-half of that trial-and-error system which is necessary for dealing with environment. The artificially homogenized populations of man’s domestic animals and plants are scarcely fit for survival. And today a further correction of the unit is necessary. The flexible environment must also be included along with the flexible organism because, as I have already said, the organism which destroys its environment destroys itself. The unit of survival is a flexible organism-in-its-environment.
Now, let me leave evolution for a moment to consider what is the unit of mind. Let us go back to the map and the territory and ask: “What is it in the territory that gets onto the map?” We know the territory does not get onto the map. That is the central point about which we here are all agreed. Now, if the territory were uniform, nothing would get onto the map except its boundaries, which are the points at which it ceases to be uniform against some larger matrix. What gets onto the map, in fact, is difference, be it a difference in altitude, a difference in vegetation, a difference in population structure, difference in surface, or whatever. Differences are the things that get onto a map.
A difference, then, is an abstract matter. In the hard sciences, effects are, in general, caused by rather concrete conditions or events—impacts, forces, and so forth. But when you enter the world of communication, organization, etc., you leave behind that whole world in which effects are brought about by forces and impacts and energy exchange. You enter a world in which “effects”—and I am not sure one should still use the same word—are brought about by differences. That is, they are brought about by the sort of “thing” that gets onto the map from the territory. This is difference. Difference travels from the wood and paper into my retina. It then gets picked up and worked on by this fancy piece of computing machinery in my head. The whole energy relation is different. In the world of mind, nothing—that which is not—can be a cause. In the hard sciences, we ask for causes and we expect them to exist and be “real.” But remember that zero is different from one, and because zero is different from one, zero can be a cause in the psychological world, the world of communication. The letter which you do not write can get an angry reply; and the income tax form which you do not fill in can trigger the Internal Revenue boys into energetic action, because they, too, have their breakfast, lunch, tea, and dinner and can react with energy which they derive from their metabolism. The letter which never existed is no source of energy. It follows, of course, that we must change our whole way of thinking about mental and communicational process. The ordinary analogies of energy theory which people borrow from the hard sciences to provide a conceptual frame upon which they try to build theories about psychology and behavior—that entire Procrustean structure—is non-sense. It is in error.
We commonly think of the external “physical world” as somehow separate from an internal “mental world.” I believe that this division is based on the contrast in coding and transmission inside and outside the body. The mental world—the mind—the world of information processing—is not limited by the skin.
Let us now go back to the notion that the transform of a difference traveling in a circuit is an elementary idea. If this be correct, let us ask what a mind is. We say the map is different from the territory. But what is the territory? Operationally, somebody went out with a retina or a measuring stick and made representations which were then put upon paper. What is on the paper map is a representation of what was in the retinal representation of the man who made the map; and as you push the question back, what you find is an infinite regress, an infinite series of maps. The territory never gets in at all. The territory is Ding an sich and you can’t do anything with it. Always the process of representation will filter it out so that the mental world is only maps of maps of maps, ad infinitum. All “phenomena” are literally “appearances.” Or we can follow the chain forward. I receive various sorts of mappings which I call data or information. Upon receipt of these I act. But my actions, my muscular contractions, are transforms of differences in the input material. And I receive again data which are transforms of my actions. We get thus a picture of the mental world which has somehow jumped loose from our conventional picture of the physical world. This is not new, and for historic background we go again to the alchemists and Gnostics.
What do I mean by “my” mind? I suggest that the delimitation of an individual mind must always depend upon what phenomena we wish to understand or explain. Obviously there are lots of message pathways outside the skin, and these and the messages which they carry must be included as part of the mental system whenever they are relevant. Consider a tree and a man and an axe. We observe that the axe flies through the air and makes certain sorts of gashes in a pre-existing cut in the side of the tree. If now we want to explain this set of phenomena, we shall be concerned with differences in the cut face of the tree, differences in the retina of the man, differences in his central nervous system, differences in his efferent neural messages, differences in the behavior of his muscles, differences in how the axe flies, to the differences which the axe then makes on the face of the tree. Our explanation (for certain purposes) will go round and round that circuit. In principle, if you want to explain or understand anything in human behavior, you are always dealing with total circuits, completed circuits. This is the elementary cybernetic thought. The elementary cybernetic system with its messages in circuit is, in fact, the simplest unit of mind; and the transform of a difference traveling in a circuit is the elementary idea. More complicated systems are perhaps more worthy to be called mental systems, but essentially this is what we are talking about. The unit which shows the characteristic of trial and error will be legitimately called a mental system.
But what about “me”? Suppose I am a blind man, and I use a stick. I go tap, tap, tap. Where do I start? Is my mental system bounded at the handle of the stick? Is it bounded by my skin? Does it start halfway up the stick? Does it start at the tip of the stick? But these are nonsense questions. The stick is a pathway along which transforms of difference are being transmitted. The way to delineate the system is to draw the limiting line in such a way that you do not cut any of these pathways in ways which leave things inexplicable. If what you are trying to explain is a given piece of behavior, such as the locomotion of the blind man, then, for this purpose, you will need the street, the stick, the man; the street, the stick, and so on, round and round. But when the blind man sits down to eat his lunch, his stick and its messages will no longer be relevant—if it is his eating that you want to understand.
We get a picture, then, of mind as synonymous with cybernetic system—the relevant total information-processing, trial-and-error completing unit. And we know that within Mind in the widest sense there will be a hierarchy of subsystems, any one of which we can call an individual mind. But this picture is precisely the same as the picture which I arrived at in discussing the unit of evolution. I believe that this identity is the most important generalization which I have to offer you tonight. In considering units of evolution, I argued that you have at each step to include the completed pathways outside the protoplasmic aggregate, be it DNA-in-the-cell, or cell-in-the-body, or body-in-the-environment. The hierarchic structure is not new. Formerly we talked about the breeding individual or the family line or the taxon, and so on. Now each step of the hierarchy is to be thought of as a system, instead of a chunk cut off and visualized as against the surrounding matrix.
This identity between the unit of mind and the unit of evolutionary survival is of very great importance, not only theoretical, but also ethical. It means, you see, that I now localize something which I am calling “Mind” immanent in the large biological system—the ecosystem. Or, if I draw the system boundaries at a different level, then mind is immanent in the total evolutionary structure. If this identity between mental and evolutionary units is broadly right, then we face a number of shifts in our thinking.
Moreover, the very meaning of “survival” becomes different when we stop talking about the survival of something bounded by the skin and start to think of the survival of the system of ideas in circuit. The contents of the skin are randomized at death and the pathways within the skin are randomized. But the ideas, under further transformation, may go on out in the world in books or works of art. Socrates as a bioenergetic individual is dead. But much of him still lives as a component in the contemporary ecology of ideas.
It is also clear that theology becomes changed and perhaps renewed. The Mediterranean religions for 5000 years have swung to and fro between immanence and transcendence. In Babylon the gods were transcendent on the tops of hills; in Egypt, there was god immanent in Pharoah; and Christianity is a complex combination of these two beliefs. The cybernetic epistemology which I have offered you would suggest a new approach. The individual mind is immanent but not only in the body. It is immanent also in pathways and messages outside the body; and there is a larger Mind of which the individual mind is only a subsystem. This larger Mind is comparable to God and is perhaps what some people mean by “God,” but it is still immanent in the total interconnected social system and planetary ecology. Freudian psychology expanded the concept of mind inwards to include the whole communication system within the body—the autonomic, the habitual, and the vast range of unconscious process. What I am saying expands mind outwards. And both of these changes reduce the scope of the conscious self. A certain humility becomes appropriate, tempered by the dignity or joy of being part of something much bigger. A part—if you will—of God.
If you put God outside and set him vis-à-vis his creation and if you have the idea that you are created in his image, you will logically and naturally see yourself as outside and against the things around you. And as you arrogate all mind to yourself, you will see the world around you as mindless and therefore not entitled to moral or ethical consideration. The environment will seem to be yours to exploit. Your survival unit will be you and your folks or conspecifics against the environment of other social units, other races and the brutes and vegetables. If this is your estimate of your relation to nature and you have an advanced technology, your likelihood of survival will be that of a snowball in hell. You will die either of the toxic by-products of your own hate, or, simply, of overpopulation and overgrazing. The raw materials of the world are finite. If I am right, the whole of our thinking about what we are and what other people are has got to be restructured.
The most important task today is, perhaps, to learn to think in the new way. Let me say that I don’t know how to think that way. Intellectually, I can stand here and I can give you a reasoned exposition of this matter; but if I am cutting down a tree, I still think “Gregory Bateson” is cutting down the tree. I am cutting down the tree. “Myself” is to me still an excessively concrete object, different from the rest of what I have been calling “mind.” The step to realizing—to making habitual—the other way of thinking—so that one naturally thinks that way when one reaches out for a glass of water or cuts down a tree—that step is not an easy one. And, quite seriously, I suggest to you that we should trust no policy decisions which emanate from persons who do not yet have that habit.
There are experiences and disciplines which may help me to imagine what it would be like to have this habit of correct thought. Under LSD, I have experienced, as have many others, the disappearance of the division between self and the music to which I was listening. The perceiver and the thing perceived become strangely united into a single entity. This state is surely more correct than the state in which it seems that “I hear the music.” The sound, after all, is Ding an sich, but my perception of it is a part of mind. It is told of Johann Sebastian Bach that when somebody asked him how he played so divinely, he answered, “I play the notes, in order, as they are written. It is God who makes the music.” But not many of us can claim Bach’s correctness of epistemology—or that of William Blake, who knew that the Poetic Imagination was the only reality. The poets have known these things all through the ages, but the rest of us have gone astray into all sorts of false reifications of the “self” and separations between the “self” and “experience.”
Please do not misunderstand me. When I say that the poets have always known these things or that most of mental process is unconscious, I am not advocating a greater use of emotion or a lesser use of intellect. Of course, if what I am saying tonight is approximately true, then our ideas about the relation between thought and emotion need to be revised. If the boundaries of the “ego” are wrongly drawn or even totally fictitious, then it may be nonsense to regard emotions or dreams or our unconscious computations of perspective as “ego-alien.” We live in a strange epoch when many psychologists try to “humanize” their science by preaching an anti-intellectual gospel. They might, as sensibly, try to physicalize physics by discarding the tools of mathematics. It is the attempt to separate intellect from emotion that is monstrous, and I suggest that it is equally monstrous—and dangerous—to attempt to separate the external mind from the internal. Or to separate mind from body.
Blake noted that “A tear is an intellectual thing,” and Pascal asserted that “The heart has its reasons of which the reason knows nothing.” We need not be put off by the fact that the reasonings of the heart (or of the hypothalamus) are accompanied by sensations of joy or grief. These computations are concerned with matters which are vital to mammals, namely, matters of relationship, by which I mean love, hate, respect, dependency, spectatorship, performance, dominance, and so on. These are central to the life of any mammal and I see no objection to calling these computations “thought,” though certainly the units of relational computation are different from the units which we use to compute about isolable things. But there are bridges between the one sort of thought and the other, and it seems to me that the artists and poets are specifically concerned with these bridges. It is not that art is the expression of the unconscious, but rather that it is concerned with the relation between the levels of mental process. From a work of art it may be possible to analyze out some unconscious thoughts of the artist, but I believe that, for example, Freud’s analysis of Leonardo’s Virgin on the Knees of St. Anne precisely misses the point of the whole exercise. Artistic skill is the combining of many levels of mind—unconscious, conscious, and external—to make a statement of their combination. It is not a matter of expressing a single level.
Transcendent mind or deity is imagined to be personal and omniscient, and as receiving information by channels separate from the earthly. He sees a species acting in ways which must disrupt its ecology and, either in sorrow or in anger, He sends the wars, the plagues, the pollution, and the fallout. Immanent mind would achieve the same final result but without either sorrow or anger. Immanent mind has no separate and unearthly channels by which to know or act and, therefore, can have no separate emotion or evaluative comment. The immanent will differ from the transcendent in greater determinism.
Crisis in the Ecology of Mind
Let me state my criterion of historical importance: Mammals in general, and we among them, care extremely, not about episodes, but about the patterns of their relationships. When you open the refrigerator door and the cat comes up and makes certain sounds, she is not talking about liver or milk, though you may know very well that that is what she wants. You may be able to guess correctly and give her that—if there is any in the refrigerator. What she actually says is something about the relationship between herself and you. If you translated her message into words, it would be something like, “dependency, dependency, dependency.” She is talking, in fact, about a rather abstract pattern within a relationship. From that assertion of a pattern, you are expected to go from the general to the specific—to deduce “milk” or “liver.”
This is crucial. This is what mammals are about. They are concerned with patterns of relationship, with where they stand in love, hate, respect, dependency, trust, and similar abstractions, vis-à-vis somebody else. This is where it hurts us to be put in the wrong. If we trust and find that that which we have trusted was untrustworthy; or if we distrust, and find that that which we distrusted was in fact trustworthy, we feel bad. The pain that human beings and all other mammals can suffer from this type of error is extreme. If, therefore, we really want to know what are the significant points in history, we have to ask which are the moments in history when attitudes were changed. These are the moments when people are hurt because of their former “values.”
The important question about history is: Has the bias or setting been changed? The episodic working out of events under a single stationary setting is really trivial. It is with this thought in mind that I have said that the two most important historic events in my life were the Treaty of Versailles and the discovery of cybernetics. Most of you probably hardly know how the Treaty of Versailles came into being. The story is very simple. World War I dragged on and on; the Germans were rather obviously losing. At this point, George Creel, a public relations man—and I want you not to forget that this man was a granddaddy of modern public relations—had an idea: the idea was that maybe the Germans would surrender if we offered them soft armistice terms. He therefore drew up a set of soft terms, according to which there would be no punitive measures.
The Treaty was finally drawn up by four men: Clemenceau, “the tiger,” who wanted to crush Germany; Lloyd George, who felt it would be politically expedient to get a lot of reparations out of Germany, and some revenge; and Wilson, who had to be bamboozled along. Whenever Wilson would wonder about those Fourteen Points of his, they took him out into the war cemeteries and made him feel ashamed of not being angry with the Germans. Who was the other? Orlando was the other, an Italian. This was one of the great sellouts in the history of our civilization. A most extraordinary event which led fairly directly and inevitably into World War II. It also led (and this is perhaps more interesting than the fact of its leading to World War II) to the total demoralization of German politics. If you promise your boy something, and renege on him, framing the whole thing on a high ethical plane, you will probably find that not only is he very angry with you, but that his moral attitudes deteriorate as long as he feels the unfair whiplash of what you are doing to him. It’s not only that World War II was the appropriate response of a nation which had been treated in this particular way; what is more important is the fact that the demoralization of that nation was expectable from this sort of treatment. From the demoralization of Germany, we, too, became demoralized. This is why I say that the Treaty of Versailles was an attitudinal turning point.
Now I want to talk about the other significant historical event which has happened in my lifetime, approximately in 1946–47. This was the growing together of a number of ideas which had developed in different places during World War II. We may call the aggregate of these ideas cybernetics, or communication theory, or information theory, or systems theory. The ideas were generated in many places: in Vienna by Bertalanffy, in Harvard by Wiener, in Princeton by von Neumann, in Bell Telephone labs by Shannon, in Cambridge by Craik, and so on. All these separate developments in different intellectual centers dealt with communicational problems, especially with the problem of what sort of a thing is an organized system. You will notice that everything I said about history and about Versailles is a discussion of organized systems and their properties. Now I want to say that we are developing a certain amount of rigorous scientific understanding of these very mysterious organized systems.
The stance that I have taken in choosing what is important in history—saying that the important things are the moments at which attitude is determined, the moments at which the bias of the thermostat is changed—this stance is derived directly from cybernetics. These are thoughts shaped by events from 1946 and after. But pigs do not go around ready-roasted. We now have a lot of cybernetics, a lot of games theory, and the beginnings of understanding of complex systems. But any understanding can be used in destructive ways. I think that cybernetics is the biggest bite out of the fruit of the Tree of Knowledge that mankind has taken in the last 2000 years. But most of such bites out of the apple have proved to be rather indigestible—usually for cybernetic reasons. Cybernetics has integrity within itself, to help us to not be seduced by it into more lunacy, but we cannot trust it to keep us from sin.
I submit to you that what is wrong with the international field is that the rules need changing. The question is not what is the best thing to do within the rules as they are at the moment. The question is how can we get away from the rules within which we have been operating for the last ten or twenty years, or since the Treaty of Versailles. The problem is to change the rules, and insofar as we let our cybernetic inventions—the computers—lead us into more and more rigid situations, we shall in fact be maltreating and abusing the first hopeful advance since 1918.
I raised the question which nobody was willing to treat seriously, perhaps because my tone of voice encouraged them to smile. The question was whether there are true ideologies. We find that different peoples of the world have different ideologies, different epistemologies, different ideas of the relationship between man and nature, different ideas about the nature of man himself, the nature of his knowledge, his feelings, and his will. But if there were a truth about these matters, then only those social groups which thought according to that truth could reasonably be stable. And if no culture in the world thinks according to that truth, then there would be no stable culture. Notice again that we face the question of how long it takes to come up against trouble. Epistemological error is often reinforced and therefore self-validating. You can get along all right in spite of the fact that you entertain at rather deep levels of the mind premises which are simply false.
I think perhaps the most interesting—though still incomplete—scientific discovery of the twentieth century is the discovery of the nature of mind. Let me outline some of the ideas which have contributed to this discovery. Immanuel Kant, in the Critique of Judgment, states that the primary act of aesthetic judgment is selection of a fact. There are, in a sense, no facts in nature; or if you like, there are an infinite number of potential facts in nature, out of which the judgment selects a few which become truly facts by that act of selection. Now, put beside that idea of Kant, Jung’s insight in Seven Sermons to the Dead, a strange document in which he points out that there are two worlds of explanation or worlds of understanding, the pleroma and the creatura. In the pleroma there are only forces and impacts. In the creatura, there is difference. In other words, the pleroma is the world of the hard sciences, while the creatura is the world of communication and organization. A difference cannot be localized. There is a difference between the color of this desk and the color of this pad. But that difference is not in the pad, it is not in the desk, and I cannot pinch it between them. The difference is not in the space between them. In a word, a difference is an idea.
The world of creatura is that world of explanation in which effects are brought about by ideas, essentially by differences. If now we put Kant’s insight together with that of Jung, we create a philosophy which asserts that there is an infinite number of differences in this piece of chalk but that only a few of these differences make a difference. This is the epistemological base for information theory. The unit of information is difference. In fact, the unit of psychological input is difference. The whole energy structure of the pleroma—the forces and impacts of the hard sciences—have flown out the window, so far as explanation within creatura is concerned. After all, zero differs from one, and zero therefore can be a cause, which is not admissible in hard science. The letter which you did not write can precipitate an angry reply, because zero can be one-half of the necessary bit of information. Even sameness can be a cause, because sameness differs from difference.
Suddenly, in the last twenty years, these notions have come together to give us a broad conception of the world in which we live—a new way of thinking about what a mind is. Let me list what seem to me to be those essential minimal characteristics of a system, which I will accept as characteristics of mind:
-
The system shall operate with and upon differences.
-
The system shall consist of closed loops or networks of pathways along which differences and transforms of differences shall be transmitted. (What is transmitted on a neuron is not an impulse, it is news of a difference.)
-
Many events within the system shall be energized by the respondent part rather than by impact from the triggering part.
-
The system shall show self-correctiveness in the direction of homeostasis and/or in the direction of runaway. Self-correctiveness implies trial and error.
Now, these minimal characteristics of mind are generated whenever and wherever the appropriate circuit structure of causal loops exists. Mind is a necessary, an inevitable function of the appropriate complexity, wherever that complexity occurs. But that complexity occurs in a great many other places besides the inside of my head and yours. We’ll come later to the question of whether a man or a computer has a mind. For the moment, let me say that a redwood forest or a coral reef with its aggregate of organisms interlocking in their relationships has the necessary general structure. The energy for the responses of every organism is supplied from its metabolism, and the total system acts self-correctively in various ways. A human society is like this with closed loops of causation. Every human organization shows both the self-corrective characteristic and has the potentiality for runaway.
Now, let us consider for a moment the question of whether a computer thinks. I would state that it does not. What “thinks” and engages in “trial and error” is the man plus the computer plus the environment. And the lines between man, computer, and environment are purely artificial, fictitious lines. They are lines across the pathways along which information or difference is transmitted. They are not boundaries of the thinking system. What thinks is the total system which engages in trial and error, which is man plus environment. But if you accept self-correctiveness as the criterion of thought or mental process, then obviously there is “thought” going on inside the man at the autonomic level to maintain various internal variables. And similarly, the computer, if it controls its internal temperature, is doing some simple thinking within itself.
If, now, we correct the Darwinian unit of survival to include the environment and the interaction between organism and environment, a very strange and surprising identity emerges: the unit of evolutionary survival turns out to be identical with the unit of mind. Formerly we thought of a hierarchy of taxa—individual, family line, subspecies, species, etc.—as units of survival. We now see a different hierarchy of units—gene-in-organism, organism-in-environment, ecosystem, etc. Ecology, in the widest sense, turns out to be the study of the interaction and survival of ideas and programs (i.e., differences, complexes of differences, etc.) in circuits.
Anthropologically, it would seem from what we know of the early material, that man in society took clues from the natural world around him and applied those clues in a sort of metaphoric way to the society in which he lived. That is, he identified with or empathized with the natural world around him and took that empathy as a guide for his own social organization and his own theories of his own psychology. This was what is called “totemism.” In a way, it was all nonsense, but it made more sense than most of what we do today, because the natural world around us really has this general systemic structure and therefore is an appropriate source of metaphor to enable man to understand himself in his social organization.
The next step, seemingly, was to reverse the process and to take clues from himself and apply these to the natural world around him. This was “animism,” extending the notion of personality or mind to mountains, rivers, forests, and such things. This was still not a bad idea in many ways. But the next step was to separate the notion of mind from the natural world, and then you get the notion of gods. But when you separate mind from the structure in which it is immanent, such as human relationship, the human society, or the ecosystem, you thereby embark, I believe, on fundamental error, which in the end will surely hurt you. Struggle may be good for your soul up to the moment when to win the battle is easy. When you have an effective enough technology so that you can really act upon your epistemological errors and can create havoc in the world in which you live, then the error is lethal. Epistemological error is all right, it’s fine, up to the point at which you create around yourself a universe in which that error becomes immanent in monstrous changes of the universe that you have created and now try to live in.
Ecology and Flexibility in Urban Civilization
I suggest then that a healthy ecology of human civilization would be defined somewhat as follows: A single system of environment combined with high human civilization in which the flexibility of the civilization shall match that of the environment to create an ongoing complex system, open-ended for slow change of even basic (hard-programmed) characteristics.
Civilizations have risen and fallen. A new technology for the exploitation of nature or a new technique for the exploitation of other men permits the rise of a civilization. But each civilization, as it reaches the limits of what can be exploited in that particular way, must eventually fall. The new invention gives elbow room or flexibility, but the using up of that flexibility is death. Either man is too clever, in which case we are doomed, or he was not clever enough to limit his greed to courses which would not destroy the ongoing total system. I prefer the second hypothesis. It becomes then necessary to work toward a definition of “high.”
-
It would not be wise (even if possible) to return to the innocence of the Australian aborigines, the Eskimo, and the Bushmen. Such a return would involve loss of the wisdom which prompted the return and would only start the whole process over.
-
A “high” civilization should therefore be presumed to have, on the technological side, whatever gadgets are necessary to promote, maintain (and even increase) wisdom of this general sort. This may well include computers and complex communication devices.
-
A “high” civilization shall contain whatever is necessary (in educational and religious institutions) to maintain the necessary wisdom in the human population and to give physical, aesthetic, and creative satisfaction to people. There shall be a matching between the flexibility of people and that of the civilization. There shall be diversity in the civilization, not only to accommodate the genetic and experiential diversity of persons, but also to provide the flexibility and “preadaptation” necessary for unpredictable change.
-
A “high” civilization shall be limited in its transactions with environment. It shall consume unreplaceable natural resources only as a means to facilitate necessary change (as a chrysalis in metamorphosis must live on its fat). For the rest, the metabolism of the civilization must depend upon the energy income which Spaceship Earth derives from the sun. In this connection, great technical advance is necessary.
To achieve, in a few generations, anything like the healthy system dreamed of above or even to get out of the grooves of fatal destiny in which our civilization is now caught, very great flexibility will be needed. It is right, therefore, to examine this concept with some care. Indeed, this is a crucial concept. We should evaluate not so much the values and trends of relevant variables as the relation between these trends and ecological flexibility. Following Ross Ashby, I assume that any biological system (e.g., the ecological environment, the human civilization, and the system which is to be the combination of these two) is describable in terms of interlinked variables such that for any given variable there is an upper and a lower threshold of tolerance beyond which discomfort, pathology, and ultimately death must occur. Within these limits, the variable can move (and is moved) in order to achieve adaptation. When, under stress, a variable must take a value close to its upper or lower limit of tolerance, we shall say, borrowing a phrase from the youth culture, that the system is “up tight” in respect to this variable, or lacks “flexibility” in this respect. But, because the variables are interlinked, to be up tight in respect to one variable commonly means that other variables cannot be changed without pushing the up-tight variable. The loss of flexibility thus spreads through the system. In extreme cases, the system will only accept those changes which change the tolerance limits for the up-tight variable. For example, an overpopulated society looks for those changes (increased food, new roads, more houses, etc.) which will make the pathological and pathogenic conditions of overpopulation more comfortable. But these ad hoc changes are precisely those which in longer time can lead to more fundamental ecological pathology. The pathologies of our time may broadly be said to be the accumulated results of this process—the eating up of flexibility in response to stresses of one sort or another (especially the stress of population pressure) and the refusal to bear with those by-products of stress (e.g., epidemics and famine) which are the age-old correctives for population excess.
Social flexibility is a resource as precious as oil or titanium and must be budgeted in appropriate ways, to be spent (like fat) upon needed change. Broadly, since the “eating up” of flexibility is due to regenerative (i.e., escalating) subsystems within the civilization, it is, in the end, these that must be controlled. It is worth noting here that flexibility is to specialization as entropy is to negentropy. Flexibility may be defined as uncommited potentiality for change.
Again following Ashby, the distribution of flexibility among the many variables of a system is a matter of very great importance. The healthy system, dreamed of above, may be compared to an acrobat on a high wire. To maintain the ongoing truth of his basic premise (“I am on the wire”), he must be free to move from one position of instability to another, i.e., certain variables such as the position of his arms and the rate of movement of his arms must have great flexibility, which he uses to maintain the stability of other more fundamental and general characteristics. If his arms are fixed or paralyzed (isolated from communication), he must fall.
A civilization runs on ideas of all degrees of generality. These ideas are present (some explicit, some implicit) in the actions and interactions of persons—some conscious and clearly defined, others vague, and many unconscious. Some of these ideas are widely shared, others differentiated in various subsystems of the society. If a budget of flexibility is to be a central component of our understanding of how the environment-civilization works, and if a category of pathology is related to unwise spending of this budget, then surely the flexibility of ideas will play an important role in our theory and practice. A few examples of basic cultural ideas will make the matter clear: “The Golden Rule,” “An eye for an eye,” and “Justice.” “The common sense of scarcity economics” versus “The common sense of affluence.” “The name of that thing is ‘chair’” and many of the reifying premises of language. “The survival of the fittest” versus “The survival of organism-plus-environment.” Premises of mass production, challenge, pride, etc. The premises of transference, ideas about how character is determined, theories of education, etc. Patterns of personal relatedness, dominance, love, etc.
It is asserted above that the overall flexibility of a system depends upon keeping many of its variables in the middle of their tolerable limits. But there is a partial converse of this generalization: Owing to the fact that inevitably many of the subsystems of the society are regenerative, the system as a whole tends to “expand” into any area of unused freedom. It used to be said that “Nature abhors a vacuum,” and indeed something of the sort seems to be true of unused potentiality for change in any biological system. In other words, if a given variable remains too long at some middle value, other variables will encroach upon its freedom, narrowing the tolerance limits until its freedom to move is zero or, more precisely, until any future movement can only be achieved at the price of disturbing the encroaching variables. In other words, the variable which does not change its value becomes ipso facto hard programmed. Indeed, this way of stating the genesis of hard-programmed variables is only another way of describing habit formation. As a Japanese Zen master once told me, “To become accustomed to anything is a terrible thing.”
From all of this it follows that to maintain the flexibility of a given variable, either that flexibility must be exercised, or the encroaching variables must be directly controlled. We live in a civilization which seems to prefer prohibition to positive requirement, and therefore we try to legislate (e.g., with antitrust laws) against the encroaching variables; and we try to defend “civil liberties” by legally slapping the wrists of encroaching authority. We try to prohibit certain encroachments, but it might be more effective to encourage people to know their freedoms and flexibilities and to use them more often. In our civilization, the exercise of even the physiological body, whose proper function is to maintain the flexibility of many of its variables by pushing them to extreme values, becomes a “spectator sport,” and the same is true of the flexibility of social norms. We go to the movies or the courts—or read newspapers—for vicarious experience of exceptional behavior.
The hardest saying in the Bible is that of St. Paul, addressing the Galatians: “God is not mocked,” and this saying applies to the relationship between man and his ecology. It is of no use to plead that a particular sin of pollution or exploitation was only a little one or that it was unintentional or that it was committed with the best intentions. Or that “If I didn’t, somebody else would have.” The processes of ecology are not mocked. On the other hand, surely the mountain lion when he kills the deer is not acting to protect the grass from overgrazing. In fact, the problem of how to transmit our ecological reasoning to those whom we wish to influence in what seems to us to be an ecologically “good” direction is itself an ecological problem. We are not outside the ecology for which we plan—we are always and inevitably a part of it. Herein lies the charm and the terror of ecology—that the ideas of this science are irreversibly becoming a part of our own ecosocial system.